Spatial relationship of tertiary lymphoid structures and PMN-MDSCs in bladder cancer and prognostic potential for PD-L1 immunotherapy

Anna Juncker-Jensen¹ · Xuechun Wang² · Gang Huang² · Xuemin Lu² · Liang Cheng² · Xin Lu² NeoGenomics Laboratories¹ & The University of Notre Dame²

Background: Tertiary lymphoid structures (TLSs) are organized clusters of immune cells found in non-lymphoid tissues including solid tumors. TLSs are associated with favorable responses to immune checkpoint blockade (ICB) independent of programmed death-ligand 1 (PD-L1) status. TLSs may also contain immunosuppressive cells such as regulatory T cells and polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) that suppress effector T cells. The relative distribution of TLSs and PMN-MDSCs has not been studied in human cancers.

Methods: We designed a study to investigate the distribution of immune cells inside and near the TLSs of bladder cancer and to evaluate the prognostic significance of TLSs and PMN-MDSCs in bladder cancer patients treated with ICB therapy. We performed a retrospective study using FFPE samples from 26 primary bladder cancers. Samples were stained with H&E to recognize 58 TLS regions of interest (ROIs), which were further stained with a 14marker panel using MultiOmyx[™] multiplexed IF technology.

Results: 58 TLSs were classified into 23 early TLSs (E-TLSs) and 35 follicle-like TLSs (FL-TLSs) based on the morphology. To examine the spatial distribution of immune cells relative to TLSs, we set the TLS-ROIs as the center and selected ROIs 500 μ m and 1,000 μ m away as near-TLS-ROIs and far-TLS-ROIs. Lymphocytes were most abundant in the TLS-ROIs and decreased as the distance from TLSs increased and similar patterns were observed for PMN-MDSCs. Next, we assessed the clinical association between TLSs and PMN-MDSCs using gene signatures based on the IMvigor210 phase 2 trial of atezolizumab (anti-PD-L1) on advanced urothelial carcinoma and we found TLS signatures to be associated with better survival. When patients were stratified based on TLS and PMN-MDSC signatures, the survival from favorable to unfavorable followed the order TLS^{high}PMN-MDSC^{low} > TLS^{high}PMN-MDSC^{high} > TLS^{low}PMN-MDSC^{low} > TLS^{low}PMN-MDSC^{high}.

Parameter	Value	Co-expressions	Phenotype
Number of patients	26	CD3+CD4+	T helper
Age (years)		CD3+CD4+FoxP3+	T regulatory
median Banga	63.5 40-81	CD3+CD8+	Cytotoxic T cell
Range Gender (cases)	40-01	CD3-CD20+	B cell
Male	25	CD11b+HLADR+	MHC-II+ myeloid
Female pT-status (cases)ª	1	CD11+HLADR-	MDSC
Ta	3	CD11+HLADR-CD14+CD15-	M-MDSC
T1	4	CD11+HLADR-CD14-CD15+	G-MDSC/TAN
T2 T3	11 6	CD11+HLADR-CXCR2+	CXCR2+ MDSC
T4	1	CD68+	ТАМ
Not determined	1	CD68+HLADR+, CD68+iNOS+	M1 TAM
LN metastasis status		PNAd+	HEV
Yes	5		
No	21	PanCK	Epithelia
Table 1. Patient demographicsTable 2. Co-expressions for 14-marker pa			

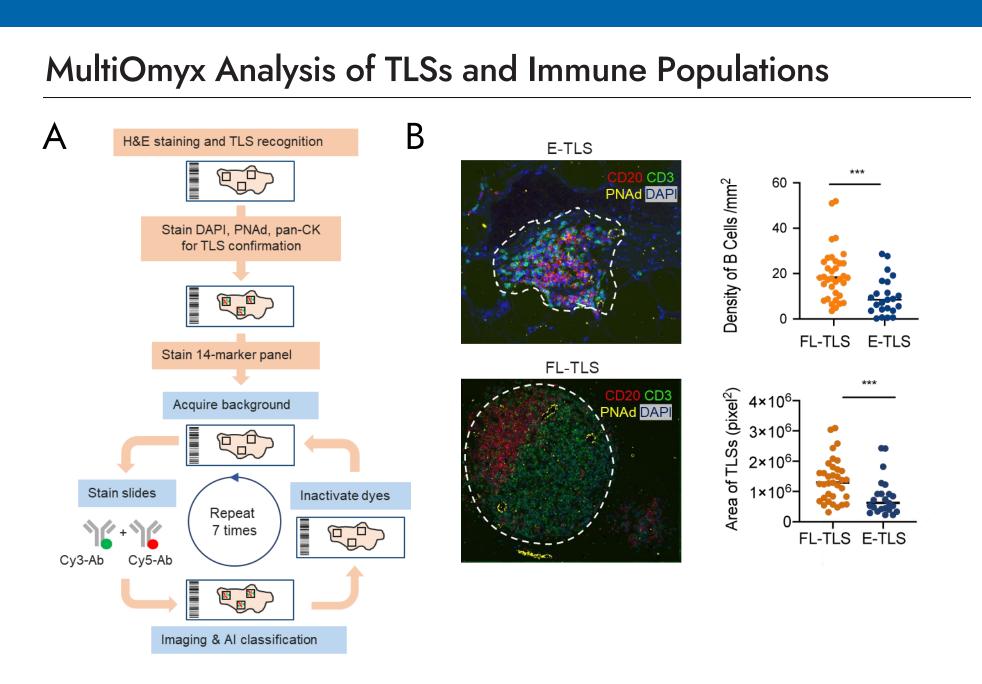


Figure 1. (A) Project workflow. Two conjugated fluorescent antibodies are applied per imaging round followed by image acquisition of the stained slides. The dye is then erased, enabling a subsequent round of staining with another pair of fluorescent antibodies. Once imaging is complete, AI algorithms segment and phenotype cells. (B) Representative images of early (E) and follicle-like (FL) TLSs. (C) Densities of B cells (upper) and TLS area sizes (lower).

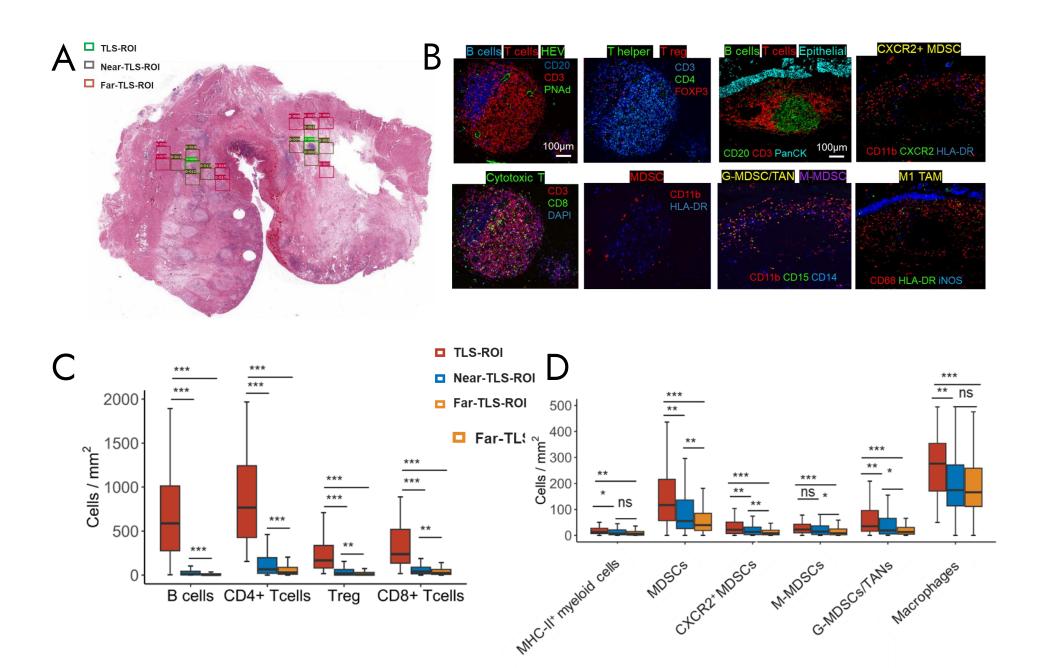


Figure 2. (A) Representative H&E marked with TLS ROIs (light green), near-TLS ROIs (dark green), and far-TLS ROIs (red). (B) Two representative follicles-like TLSs MultiOmyx IF overlay images. (C) Comparison of the densities of various lymphocytes in TLSs, near-TLSs, and far-TLSs. (D) Comparison of the densities of various myeloid cells in TLSs, near-TLSs, and far-TLSs.

All trademarks are the property of their respective owners. Any company, product, and service names are used for identification only. Use of these names does not imply endorsement.

Immune Cell Subsets and Intercellular Distances

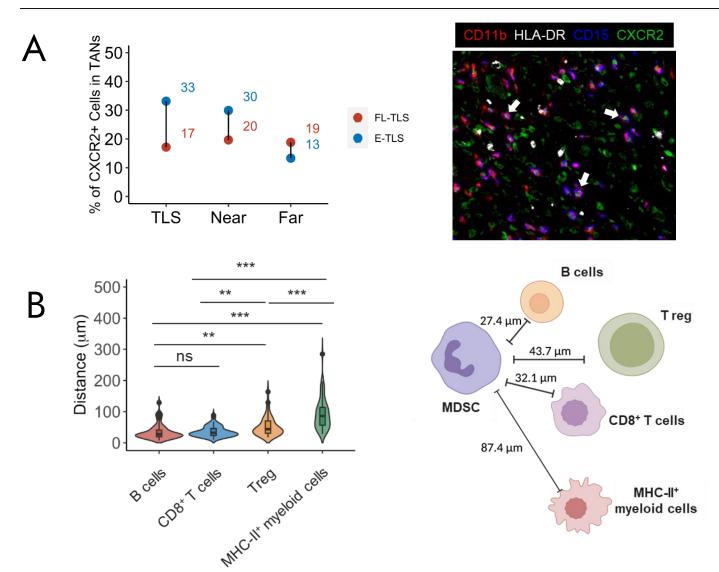
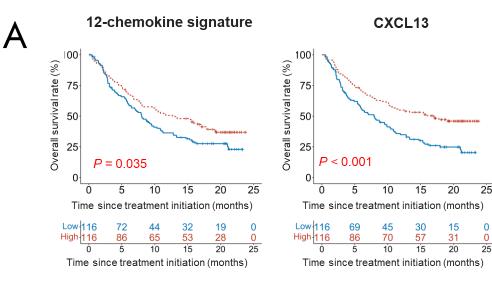
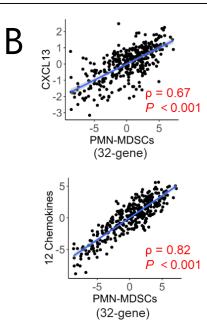


Figure 3. (A) Percentage and representative image of CXCR2+ PMN-MDSC/TANs in FL-TLS and E-TLS in 3 ROI types (TLS, near-TLS, and far-TLS). (B) Violin plots showing the distances from MDSCs to other immune cell types, and a schematic illustrating the median distances.

Overall Survival & Correlations




Figure 4. (A) Overall survival of the upper and lower tertiles of patients in IMvigor210 based on 12-chemokine signature or CXCL13 expression. (B) Correlation of CXCL13 gene expression or 12-chemokine signature with either of the two PMN-MDSC gene signatures based on the IMvigor210 dataset.

Take-Aways

- decreasing as the distance from TLSs increased.
- prognosis with anti-PD-L1 therapy, respectively.

Keystone IO Cancer Therapy 2024

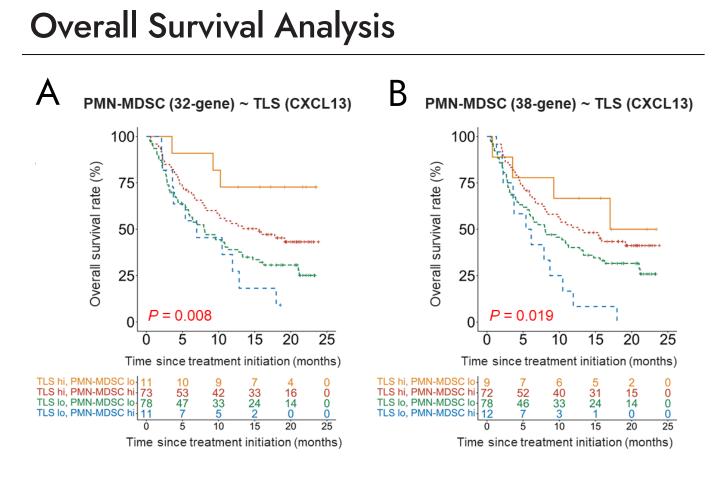


Figure 5. Kaplan-Meier analysis for overall survival of patients in Imvigor210 classified into four groups based on CXCL13 expression (TLS marker) and either of two PMN-MDSC gene signatures; (A) 32-gene signature, and (B) 38-gene signature. Upper and lower tertiles were classified as high (hi) and low (lo), respectively. P values are based on two-sided log-rank tests.

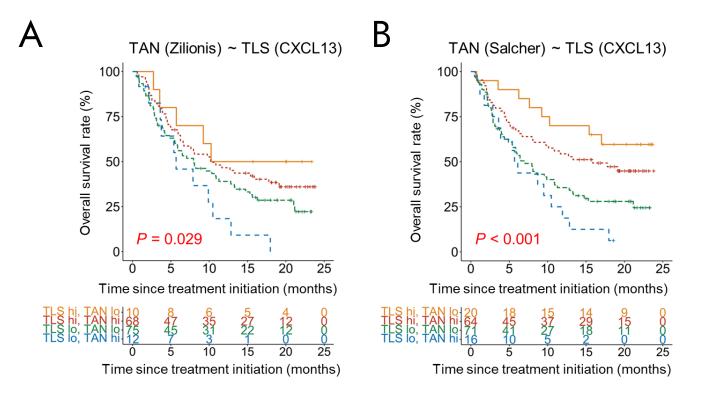


Figure 6. Kaplan-Meier analysis for overall survival of patients in Imvigor210 classified into four groups based on CXCL13 expression (TLS marker) and either of two tumor-associated neutrophil (TAN) gene signatures; Upper and lower tertiles were classified as high (hi) and low (lo), respectively. P values are based on two-sided log-rank tests.

• Lymphocytes and immunosuppressive myeloid cells were most abundant in mature TLSs of bladder cancer, with densities

Patients with bladder cancer characterized as TLS^{high}PMN-MDSC^{low} and TLS^{low}PMN-MDSC^{high} showed the best and worst

• These results may have the following clinical implications: (i) an immune score based on TLS^{high}PMN-MDSC^{low} may help select patients who would benefit most from ICB therapy; (ii) for TLS^{low}PMN-MDSC^{high} patients, strategies to induce TLS formation and debilitate PMN-MDCSs may help overcome ICB therapy resistance.